Секция «Математическая логика, алгебра и теория чисел»

Орбиты группы автоморфизмов модуля над кольцом главных идеалов Александра Гаража Андреевна

Студент (специалист)

Московский государственный университет имени М.В.Ломоносова, Механико-математический факультет, Кафедра высшей алгебры, Москва, Россия E-mail: sasha.qarazha@mail.ru

 Пусть A — кольцо главных идеалов, а M — конечнопорожденный A-модуль. По структурной теореме [1] модуль M разлагается в прямую сумму примарных и свободных циклических подмодулей, причем набор аннуляторов этих подмодулей определен однозначно. Описание орбит естественного действия $\operatorname{Aut} M: M$ легко сводится к описанию орбит действий $\operatorname{Aut}(\operatorname{Tor}_{p}M):\operatorname{Tor}_{p}M/p^{d}\operatorname{Tor}_{p}M$ для всех p и d, где $\operatorname{Tor}_{p}M$ — подмодуль p-кручения.

Пусть теперь M — примарный модуль,

$$M = A\mathbf{e}_1 \oplus \cdots \oplus A\mathbf{e}_n$$
, Ann $\mathbf{e}_i = (p^{k_i})$, $k_1 \ge k_2 \ge \cdots \ge k_n$. (*)

Для элемента $x \in M$ обозначим через x_1, \ldots, x_n его проекции на слагаемые разложения (*). Пусть $\pi: M \longrightarrow M/p^dM$ — канонический гомоморфизм модулей. Для каждого элемента $y \in M/p^d M$ назовем его прообраз $x \in \pi^{-1}(y)$ правильным, если высота прообраза h(x) минимальна (среди высот прообразов элемента y), где под высотой элемента $x \in M$ понимается значение $h(x) := \min\{k : p^k x = 0\}$. Теперь для всякого $x \in M$ определим его rлубину d(x):

$$d(x) := \begin{cases} \max \{k : x \in p^k M\}, & x \neq 0, \\ \infty, & x = 0 \end{cases}$$

Глубина и высота элементов сохраняются при автоморфизмах, более того, верна следующая

Теорема 1.

- (1) Набор чисел $\{d(x), d(px), \ldots, d(p^{k_1-1}x)\}$ является полной системой инвариантов $\partial e \ddot{u} c m в u я Aut M : M$.
- (2) Элементы модуля M/p^dM принадлежат одной орбите группы AutM тогда и только тогда, когда это же верно для их правильных прообразов.

Таким образом, числа $\{d(x), d(px), \ldots, d(p^{k_1-1}x)\}$ однозначно определяют орбиту действия Aut M: M. Но не любая последовательность возрастающих чисел соответствует какому-то элементу $x \in M$. Явное описание орбит дается при помощи следующего построения.

Каждый примарный модуль M может быть описан диаграммой Юнга Λ со столбцами высот k_1, \ldots, k_n . Поддиаграмму Юнга X со столбцами высот l_1, \ldots, l_n назовем nodxods $me\ddot{u}$ для диаграммы Λ , если найдется поддиаграмма Y такая, что $\Lambda = X + Y$ (сложение ведется по каждому из n столбцов) или, что то же самое, $0 \le l_i - l_{i+1} \le k_i - k_{i+1}$ при $i = 1 \dots n$. Множество всех подходящих поддиаграмм обозначим через S.

Построим отображение $L: M \longrightarrow S$, определив его сначала на элементах $x \in M$ таких, что $x = x_i \in A\mathbf{e}_i$:

$$[L(x_i)]_t := \begin{cases} \max\{k_i - d(x_i), 0\}, & t \le i, \\ \max\{k_t - d(x_i), 0\}, & t > i, \end{cases}$$

где $[L(x_i)]_t$ обозначает высоту t-го столбца диаграммы $L(x_i)$.

Теперь для всех $x \in M$ положим $L(x) := \bigcup L(x_i)$, где $x = x_1 + \cdots + x_n$. Таким образом, построено отображение $L: M \longrightarrow S$, а значит, может быть сформулирована

Теорема 2.

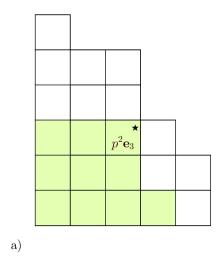
- (1) Отображение L задает взаимно-однозначное соответствие между множеством орбит действия $\operatorname{Aut} M: M$ и множеством S.
- (2) Каноническими представителями орбит действия $\mathrm{Aut}M:M$ являются элементы вида

$$x = p^{d_1} \mathbf{e}_{i_1} + \dots + p^{d_s} \mathbf{e}_{i_s}, \quad \text{где} \begin{cases} i_1 > i_2 > \dots > i_s, \\ k_{i_t} > k_{i_{t+1}}, \\ d_1 > d_2 > \dots > d_s, \\ k_{i_1} - d_1 > \dots > k_{i_s} - d_s. \end{cases}$$
 (**)

(3) Каноническими представителями орбит действия $\mathrm{Aut}M: M/p^dM$ являются элементы $\pi(x) \in M/p^dM$, где $x \in M$ определяются как в (**) с единственным дополнительным условием $d_1 < d$.

Источники и литература

1) Винберг Э. Б. Курс алгебры. — Новое издание, перераб. и доп. — М.: МЦНМО, 2011. Иллюстрации



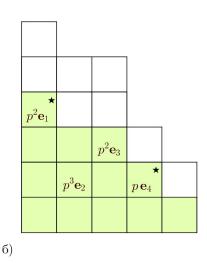


Рис. 1. Поддиаграммы L(x) для $x \in M$, где $M = A/(p^6) \oplus A/(p^5) \oplus A/(p^5) \oplus A/(p^3) \oplus A/(p^2)$ и а) $x = x_i = p^2 \mathbf{e}_3$; канонический представитель орбиты элемента $x - p^2 \mathbf{e}_3$;

б) $x = p^2 \mathbf{e}_1 + p^3 \mathbf{e}_2 + p^2 \mathbf{e}_3 + p \mathbf{e}_4$; канонический представитель орбиты элемента $x - p^2 \mathbf{e}_1 + p \mathbf{e}_4$.