Секция «Геология»

СЕКЦИЯ «ГЕОЛОГИЯ»

ПОДСЕКЦИЯ «ЛИТОЛОГИЯ»

Массовое захоронение переходных особей – диназавров и птиц в провинции Ляонин (Северо-восточный Китай)

Е.Юаньцю, Фань Иньцзе

студенты 3-го курса

кафедра литологии и морской геологии геологического факультета Московский государственный университет имени М.В.Ломоносова, Москва, Россия E-mail:Lithology@ geol msu. ru.

В журнале GEO (№ 11 Ноябрь 2008 была опубликована статья "Каменная летопись эволюции». Заметка была посвящена описанию массового захоронения окаменелостей эпохи динозавров на севере-востоке Китая. В указанном регионе в слоях вулканического пепла были обнаружены ящеры, которые учились летать.

Образцы были датированы концом юрского - начала мелового периода (J3-K1), примерно 140 млн. лет тому назад.

Как известно, до недавнего времени судить об эволюции птиц ученые могли лишь на основании одной-единственной окаменелости, найденной в 1861 г в известняках в окрестностях баварского города Зольнхофен — эта птица? Была названа «археоптериксом».

Массовое захоронение, найденное на территории китайской провинции Ляонин, представляет собой самое полное собрание останков животных и растений эпохи диназавров, когда-либо найденное на Земле!

Открытия, сделанные в провинции Ляонин, побудили китайское правительство объявить территорию в 46 км2 заповедником окаменелостей (травоядных, теплокровных, крупных и мелких).

Ученые Китая пришли к выводу, что они обнаружили недостающее промежуточное звено между ящерами и птицами. Оказалось, что подобные существа старше археоптерикса и его назвали «первый китайский птицеящер» - «синосуроптерикс прима».

Самой удивительной находкой стало яйцо летающего ящера!

(Одну из древних «птиц» (местонахождения деревня Синхетун) в честь филосова Конфуция назвали «конфуциусорнисом»). (Конфуций (Кун-цзы) жил 551-479 г до н.э. Самая его известная книга «Беседы и суждения» - беседы с учениками. Конфузий провозглашал гуманность (жэнь), уважение к старшим, преданность государю. Противопоставлял «благородных» (цзюнь цзы) и «простолюдинов» (сяо жэнь). Конфуций был провозглашен «учителем 10 тыс. поколений». Но с началом буржуазной Синьхайской революции в Китае (с 1911 г.) о нем старались забыть!).

Выяснилось, что тело древней птицы, названной в честь Конфуция, было покрыто перьями – самые длинные находились на передних конечностях, а задние лапы были оснащены мощными когтями, которыми можно было хватать добычу.

Сегодня раскопки идут полным ходом — ими руководит профессор геологии Университета в Наньцзине — Чен Пэйцзи, а трудятся сотни человек.

Предполагается, что массовая гибель животных была вызвана природной катастрофой – извержением вулкана с выбросом большого количества пирокластики - вулканического пепла.

2 Ломоносов—2009

Литература

1. GEO № 11 Ноябрь 2008 Непознанный мир:Земля. Палеонтология, М. с.114-134.

Петрография нижнемеловых песчаников Губкинского и Северо-Губкинского месторождений (Северное Приобъе, Западно-Сибирский мегабассейн)

Зеленская А.Ш.

Магистрант

ГОУ ВПО «Уральский государственный горный университет», Факультет геологии и геофизики, г.Екатеринбург, Российская Федерация

zash23@mail.ru

Объектами нашего изучения послужили нижнемеловые отложения Губкинского и Северо-Губкинского нефтегазоконденсатных месторождений. Данные месторождения расположены в пределах Надым-Пурской нефтегазоносной области Западной Сибири. Продуктивные горизонты приурочены к нижнемеловым отложениям, имеющим сложное клиноформное строение. В процессе исследования изучались образцы коллекторов группы БП.

Проведенные петрографические исследования 40 шлифов показали достаточно близкую характеристику тангаловской и сортымской свиты нижнего мела. По гранулометрическому составу среди изученных образцов преобладают тонкозернистые песчаники с примесью мелкозернистого песчаного материала и мелкозернистого алевролита. По форме обломков резко преобладают полуокатанные и угловатые зерна, меньше – остроугольные. В составе главных терригенных минералов преобладает кварц (до 60%), обломки полевых шпатов имеют подчиненное значение (до 25%), так же наблюдается наличие выветрелых пород (до 10%). Из второстепенных минералов преобладают слюды (мусковит, биотит — последний более гидратирован и деформирован). Изучаемые отложения сцементированы каолинит-гидрослюдистым, реже карбонатным цементом порового, реже базального типа.

В коллекторах сортымской свиты (пласт $Б\Pi_{11}$) в составе цемента преобладает смешено-слоистые и гидрослюдистые агрегаты. В отложениях данной свиты много мелкозернистого алевритового материала. Микротекстура песчаников данной свиты микролинзовидная, обусловленная послойным расположением слюды и органических остатков, структура песчаников – псаммитовая.

В песчано-алевритовых разностях нижней части тангаловской свиты (пласты $\mathrm{Б\Pi_7}^1$ и $\mathrm{Б\Pi_6}$) наблюдается обильная пиритизация, седиментационно-диагенетическая деформация, внедрение глинистых породообразующих минералов в песчаные массы. Для отложений данной свиты характерна псаммитовая структура песчаников; беспорядочная, микрослоистая текстура, часто ориентированная, обусловленная параллельным расположением обломочного материала.

В отложениях средней части тангаловской свиты (пласты $Б\Pi_5$ и $Б\Pi_4$) также отмечается большое содержание пирита и устанавливается анизотропия физических свойств минералов. Структура песчаников – псаммитовая, текстура – слабовыраженная микрослоистая.

В отложениях верхней части тангаловской свиты (пласты $Б\Pi_0$ и $Б\Pi_1$) имеет распространение как глинистый, так и карбонатный цемент одновременно. Так же отмечается растворение минеральных зерен (кварц, полевой шпати др.). Для данной части разреза характерно отсутствие ориентировки зерен и анизотропия.

В результате исследования установлено ухудшение коллекторских свойств сверху вниз по разрезу.

Секция «Геология» 3

Полученные петрографические и гранулометрические характеристики взаимосвязаны с фильтрационно-емкостными свойствами. Данные по анизотропии могут использоваться как параметры для выбора методов по воздействию на пласт.

Фациальные условия образования рудовмещающих отложений на одном из редкометальных месторождений

(республика Калмыкия, Ергенинская возвышенность)

Малышева Е.С.

Магистрант 1-ого года обучения геологического факультета Московский государственный университет им. М.В. Ломоносова, Москва, Россия E-mail: tigrakatenok@rambler.ru

Месторождение расположено в южной активизированной части Русской платформы (Скифская плита) и приурочено к нижнемиоценовым отложениям, залегающим на эродированной поверхности олигоценового фундамента, сложенного темно-серыми глинами, обогащенными карбонатно-фосфатным веществом. Разными исследователями генезис рудовмещающих отложений оценивался как аллювиально-морской или морской. Решение же этого вопроса имеет принципиальное значение, поскольку определяет направление поисково-оценочных работ.

При изучении литологических особенностей рудовмещающих отложений был выявлен ряд отличительных признаков, указывающих на их формирование в трех фациальных зонах прибрежной части морского водоема.

Первая фациальная зона характеризует отложения основной части разреза на участке площади месторождения. представлена центральном Она литогенетическими типами: первый - светло-серыми, крупнозернистыми кварцевыми песками с хорошей окатанностью. Отличительными признаками этих отложений является высокая степень сортировки и присутствие в них округлых и округло-овальных зерен темновато-зеленого глауконита (3-5%), часто с полированной поверхностью и с трещинками синерезиса. Глауконит чистый, без посторонней примеси; его средний размер соизмерим с размером кварцевых зерен. Все это является неоспоримым доказательством «не аллохтонного» происхождения глауконита, формирование которого происходило в данном бассейне седиментации. Второй литогенетический тип представлен зеленовато-серыми, мелкозернистыми глауконит-кварцевыми песками с перекрестной мульдообразной слоистостью. Согласно признакам литогенетических типов, отложения данной фациальной зоны формировались в прибрежных частях морского бассейна, в зоне сублиторали, с устойчивым и активным гидродинамическим режимом, существовавшим в течение длительного времени и на большой площади.

Вторая фациальная зона представлена мелко-среднеобломочными отложениями, неравномерно распределенными по разрезу и по площади, что отражает неустойчивый гидродинамический режим. Для них характерна слабая сортировка материала и цементация более крупных песчаных зерен их тонкими разновидностями, обуславливая их как бы «пудинговое» строение. В этих отложениях наблюдается сонахождение глауконита и фосфата в ассоциации. Новообразования фосфата представлены мелкими (1-2 мм) коричневатыми конкрециями, а глауконита — выделениями пластинчатой морфологии голубовато-зеленоватого цвета, придающие зеленовато-коричневатый оттенок песчаным отложениям. Их образование происходило в более мелководных частях морского бассейна, в подвижной водной среде приливно-отливного характера.

4 Ломоносов—2009

Третья фациальная зона, представлена глинами темно-серого, черного цвета, горизонтально тонкослоистыми, слюдистыми, обогащенными прослоями коричневато-бежевых мергелей. Формировались они в более глубоководных частях морского бассейна.

Литолого-фациальные исследования показали, что отложения второй фациальной зоны имеют наибольшую локализацию и концентрацию рудного компонента.

Литература

1. Холодов В.Н. (2008) О происхождении сеноманских желваковых фосфоритов днепрово-донецкой впадины (геохимический аспект проблемы) // Литология и полезные ископаемые. №1, с. 3-24.

Глинистые минералы нижневизейских отложений Северного Урала как индикаторы пирокластики

Румянцева И.И.

аспирант

Институт геологии Коми научного центра Уральского отделения РАН, Сыктывкар, Россия E-mail: ryabinkina@geo.komisc.ru

Визейские терригенные отложения в складчатой зоне Северного Урала вскрываются фрагментарно вдоль рр. Верхняя Сочь, Кыртаёль и Подчерем. Наиболее полным разрезом является обнажение на р.Подчерем Подстилаются отложения известняками кизеловского возраста. В разрезе выделяются пять пачек. Породы преимущественно кварцевые с наличием устойчивых акцессорных минералов (окатанного циркона и турмалина), вероятно, достигли минеральной зрелости за счет неоднократного переотложения. Формирование терригенных толщ происходило в прибрежно-морских условиях. В свою очередь каждый разрез отличается своим особенностями. Аргиллито-алевролитовая толща формировалась в условиях опресненной лагуны, тогда как отложения р. Кыртаёль могут быть отнесены к баровым фациям, слагающим вдольбереговые бары и баровые острова, временами выходящие на поверхность. Толща на р. Подчерем сформировалась в прибрежно-морских обстановках, однако этот процесс происходил на некотором удалении от береговой линии (за линией развития баровых островов). Образование этих песчаных тел происходило за счет волновой деятельности моря.

В результате проведенного рентгено-дифрактометрического анализа глинистой фракции было также установлено, что цемент песчаников и алевролитов имеет сходный минеральный состав с аргиллитами. Во всех образцах преобладающим минералом фракции является хорошо окристаллизованный каолинит, который полностью не разрушается при нагревании. Каолинит – типичный минерал осадочных пород, а также широко распространен в корах выветривания. Образуется при глиноземсодержащих минералов: различных полевых фельдшпатоидов, слюд и хлоритов. Кроме того, в образцах отмечается наличие неупорядоченного гидратированного иллита (смешанослойный иллит-смектит), который В процессе диагенетического преобразования смектитового и каолинитового материала, при повышенных содержаниях K и Al в поровых растворах, при разрушении обломочных зерен полевых шпатов и слюд. В образцах из разрезов на рр. В. Сочь и Подчерем присутствует незначительное количество измененного хлорита (его железисто-магнезиальная разновидность). Отличительной особенностью этих пород является присутствие в составе глинистой фракции пирофиллита. Этот минерал

Секция «Геология» 5

встречается в составе вторичных кварцитов, образовавшихся при метасамотозе кислых вулканогенных пород, а также в метаморфизованных глинистых и углисто-глинистых породах, где образует метаморфозы по остаткам растений. Для глинистого вещества исследованных образцов характерен полиминеральный состав, преобладающим в составе цемента является каолинит, а появление пирофиллита и хлорита в цементе обломочных пород и в аргиллитах может свидетельствовать о новом источнике обломочного материала.

Таким образом, терригенная толща обогащена гидролизатными продуктами, что свидетельствует о преобладании континентального источника сноса, вероятно, вследствие размыва и переноса материала кор выветривания, а образование аутигенных хлорита и пирофиллита в разрезах связано с пирокластическим материалом.

Распределение конодонтов в глинисто-карбонатных конденсированных отложениях, как показатель скоростей осадконакопления (средний ордовик, восток Ладожского глинта (р. Лынна))¹

Сащенко Анна Владимировна²

магистрант

Московский государственный университет имени М.В.Ломоносова, Геологический факультет, Москва, Россия

E-mail: avsashchenko@rambler.ru

Изученные разрезы охватывают интервал волховского и нижней части кундаского горизонтов (средний ордовик). Волховский горизонт в изученных разрезах в полном объеме слагается волховской свитой, а кундаский — лыннаской, силлаоруской, а также нижней частью обуховской свиты. Эти отложения в значительной степени конденсированы, поэтому для оценки скоростей их формирования использовался метод подсчета конодонтовых элементов в стандартизированных (300 г) весовых пробах. Пробы были отобраны из наиболее мощных прослоев глин. Количество конодонтов в пробе анализировалось в составе тяжелой фракции (фракции 0,5-0,25 и 0,25-0,1 мм).

Концентрация конодонтовых элементов в древних отложениях напрямую зависит от условий их формирования и, за редким исключением оно обратно пропорционально скорости осадконакопления [Leslie S.A. et al., 2006].

Содержание конодонтов в глинистых прослоях варьирует в пределах от 20 до 694 экземпляров, в среднем составляя около 150 – 200 элементов. Их максимальные количества характерны для пласта "горелик" и основания силлаоруской свиты. Формирование этого интервала разреза происходило на фоне высокого стояния моря с замедленной фоновой седиментацией и отсутствием привноса аллохтонного материала [Nielsen, 1992]. Минимальное количество конодонтов (3 %) можно наблюдать в интервалах разреза, имеющих нодулярное строение. К таковым, например, относятся отдельные уровни внутри "фризов" (верхи волховской свиты), а также нижняя пачка лыннаской свиты. Вероятно, образование этих отложений связано с частичным растворением карбонатного материала под действием литостатического давления на стадии диагенеза осадка, что по способу образования сходно с формированием флазерных текстур и глинистых прослоев [Барабошкин и др., 2002]. Незначительное количество конодонтовых элементов также характерно для наиболее массивных

 $^{^{1}}$ Тезисы доклада основаны на материалах исследований, проведенных в рамках гранта РФФИ (грант № 07-05-00882).

² Автор выражает благодарность своему научному руководителю Зайцеву А.В. за помощь в подготовке тезисов.

6 *Ломоносов*—2009

(толстослоистых) карбонатных прослоев. Их формирование, вероятно, происходило достаточно быстро, не исключено, что при активном гидродинамическом воздействии, с привносом аллохтонного карбонатного материала. В пользу этого свидетельствуют наличие на этом уровне "мостовой" из переотложенных панцирей трилобитов [Иванцов и др., 1998]. Средние (20 – 30 %) значения содержания конодонтов характеризуют прослои, для которых, характерны развития многофазных поверхностей твердого дна.

Литература

- 1. Иванцов А.Ю., Мельникова Л.М. (1998) Волховский и кундаский горизонты ордовика и характеристика трилобитов и остракод на р. Волхов (Ленинградская область) // Стратиграфия. Геологическая корреляция. Т. 6, № 5.
- 2. Барабошкин Е.Ю., Веймарн А.Б., Копаевич Л.Ф., Найдин Д.П. (2002) Изучение стратиграфических перерывов при производстве геологической съемки: Метод. рекомендации. М.: Изд-во МГУ.
- 3. Leslie S.A., Goldman D., Repetski J.E, Maletz J. (2006) Sea-level control on the concentration of Ordovician conodonts from deep-water siliciclastic settings // Pander International Conodont Symposium. Leicester. Abstract Volume.

Структурная характеристика отложений западных берегов реки Син

в Бо Хэ море (Китай)

Юань Фан

магистр

Московский государственный университет им. М.В.Ломоносова, Москва, Россия E-mail: litology@geol.msu.ru

Район исследования находится в Китае, на западном берегу реки Син в ее устье. Названная река впадает в море Бо Хэ. Объектом исследований послужили осадки, отобранные на пологом участке берега реки — от её уреза до дюны. Целью работы является изучение состава и структуры осадков, накопившихся в устье реки.

Во время зимой практики мною отработаны 4 профиля на различных участках западного берега. Три профиля ориентированы с северо-запада на юго-восток, и еще один профиль отработан далеко от устья, он имеет направление с востока на запад. Состав осадков и строение разрезов изучалось визуально.

Был проведен гранулометрический анализ 24-х образцов. (в каждом профиле было взято по 6 образцов). Результаты гранулометрического анализа показали, что на участках развития берега развиты пески (размер зерен от 1 до 0.05мм) и алевриты (соответственно размер - от 0.05 до 0.005мм). Количество фракции постоянно в каждом образце. Комплексный анализ результатов всех видов исследован - установлена структура песков и алевритов (размер, форма) по каждому профилю. Было проведено сравнение кумулятивных кривых и гистограмм образцов по каждому профилю на основе чего, сделана попытка установить гидродинамику береговой зоны.

Полученные результаты могут быть использованы для уточнения условий формирования берегов указанной реки и влияние водной толщи на донные и береговые отложения.